
Chapter VIII • Functions 159

VIII
Functions

CHAPTER

The focus of this chapter is functions—when to declare them, how to declare them, and

different techniques for using them. Functions are the building blocks of the C language,

and mastering functions is one of the key elements needed to be a successful

C programmer.

When you read this chapter, keep in mind the functions you have written and whether

or not you are squeezing every bit of efficiency out of them. If you aren’t doing so, you

should apply some of the techniques presented in this chapter to make your programs

faster and more efficient. Also, keep in mind some of the tips presented here regarding

good programming practice—perhaps you can improve your function-writing skills by

examining some of the examples provided.

VIII.1: When should I declare a function?
Answer:

Functions that are used only in the current source file should be declared as st at i c (see

FAQ VIII.4), and the function’s declaration should appear in the current source file along

with the definition of the function. Functions used outside of the current source file

should have their declarations put in a header file, which can be included in whatever

C Programming: Just the FAQs160

source file is going to use that function. For instance, if a function named st at _f unc() is used only in the

source file stat.c, it should be declared as shown here:

/ * s t at . c * /

#i nc l ude <st di o. h>

st at i c i nt s t at _f unc(i nt , i nt) ; / * s t at i c decl ar at i on of s t at _f unc() * /

➥ voi d mai n(voi d) ;

voi d mai n(voi d)

{

 . . .

 r c = s t at _f unc(1, 2) ;

 . . .

}

/ * def i ni t i on (body) of s t at _f unc() * /

s t at i c i nt s t at _f unc(i nt ar g1, i nt ar g2)

{

 . . .

 r et ur n r c;

}

In this example, the function named st at _f unc() is never used outside of the source file stat.c. There is

therefore no reason for the prototype (or declaration) of the function to be visible outside of the stat.c source

file. Thus, to avoid any confusion with other functions that might have the same name, the declaration of

st at _f unc() should be put in the same source file as the declaration of st at _f unc() .

In the following example, the function gl ob_f unc() is declared and used in the source file global.c and is used

in the source file extern.c. Because gl ob_f unc() is used outside of the source file in which it’s declared, the

declaration of gl ob_f unc() should be put in a header file (in this example, named proto.h) to be included

in both the global.c and the extern.c source files. This is how it’s done:

File: proto.h

/ * pr ot o. h * /

i nt gl ob_f unc(i nt , i nt) ; / * dec l ar at i on of t he gl ob_f unc() f unct i on * /

File: global.c

/ * gl obal . c * /

#i nc l ude <st di o. h>

#i nc l ude “ pr ot o. h” / * i ncl ude t hi s f i l e f or t he decl ar at i on of

 gl ob_f unc() * /

voi d mai n(voi d) ;

voi d mai n(voi d)

Chapter VIII • Functions 161

{

 . . .

 r c = gl ob_f unc(1, 2) ;

 . . .

}

/ * def i ni t i on (body) of t he gl ob_f unc() f unct i on * /

i nt gl ob_f unc(i nt ar g1, i nt ar g2)

{

 . . .

 r et ur n r c;

}

File: extern.c

/ * ext er n. c * /

#i nc l ude <st di o. h>

#i nc l ude “ pr ot o. h” / * i ncl ude t hi s f i l e f or t he decl ar at i on of

 gl ob_f unc() * /

voi d ext _f unc(voi d) ;

voi d ext _f unc(voi d)

{

 . . .

 / * cal l gl ob_f unc() , whi ch i s def i ned i n t he gl obal . c sour ce f i l e * /

 r c = gl ob_f unc(10, 20) ;

 . . .

}

In the preceding example, the declaration of gl ob_f unc() is put in the header file named proto.h because

gl ob_f unc() is used in both the global.c and the extern.c source files. Now, whenever gl ob_f unc() is going

to be used, you simply need to include the proto.h header file, and you will automatically have the function’s

declaration. This will help your compiler when it is checking parameters and return values from global

functions you are using in your programs. Notice that your function declarations should always appear before

the first function declaration in your source file.

In general, if you think your function might be of some use outside of the current source file, you should

put its declaration in a header file so that other modules can access it. Otherwise, if you are sure your function

will never be used outside of the current source file, you should declare the function as st at i c and include

the declaration only in the current source file.

C Programming: Just the FAQs162

Cross Reference:
VIII.2: Why should I prototype a function?

VIII.3: How many parameters should a function have?

VIII.4: What is a static function?

VIII.2: Why should I prototype a function?
Answer:

A function prototype tells the compiler what kind of arguments a function is looking to receive and what

kind of return value a function is going to give back. This approach helps the compiler ensure that calls to

a function are made correctly and that no erroneous type conversions are taking place. For instance, consider

the following prototype:

i nt some_f unc(i nt , char * , l ong) ;

Looking at this prototype, the compiler can check all references (including the definition of some_f unc())

to ensure that three parameters are used (an integer, a character pointer, and then a long integer) and that

a return value of type integer is received. If the compiler finds differences between the prototype and calls

to the function or the definition of the function, an error or a warning can be generated to avoid errors in

your source code. For instance, the following examples would be flagged as incorrect, given the preceding

prototype of some_f unc() :

x = some_f unc(1) ; / * not enough ar gument s passed * /

x = some_f unc(“ HELLO! ” , 1, “ DUDE! ”) ; / * wr ong t ype of ar gument s used * /

x = some_f unc(1, s t r , 2879, “ T”) ; / * t oo many ar gument s passed * /

In the following example, the return value expected from some_f unc() is not an integer:

l ong* l Val ue;

l Val ue = some_f unc(1, s t r , 2879) ; / * some_f unc() r et ur ns an i nt ,

 not a l ong* * /

Using prototypes, the compiler can also ensure that the function definition, or body, is correct and correlates

with the prototype. For instance, the following definition of some_f unc() is not the same as its prototype,

and it therefore would be flagged by the compiler:

i nt some_f unc(char * st r i ng, l ong l Val ue, i nt i Val ue) / * wr ong or der of

 par amet er s * /

{

 . . .

}

The bottom line on prototypes is that you should always include them in your source code because they

provide a good error-checking mechanism to ensure that your functions are being used correctly. Besides,

many of today’s popular compilers give you warnings when compiling if they can’t find a prototype for a

function that is being referenced.

Chapter VIII • Functions 163

Cross Reference:
VIII.1: When should I declare a function?

VIII.3: How many parameters should a function have?

VIII.4: What is a static function?

VIII.3: How many parameters should a function have?
Answer:

There is no set number or “guideline” limit to the number of parameters your functions can have. However,

it is considered bad programming style for your functions to contain an inordinately high (eight or more)

number of parameters. The number of parameters a function has also directly affects the speed at which it

is called—the more parameters, the slower the function call. Therefore, if possible, you should minimize the

number of parameters you use in a function. If you are using more than four parameters, you might want

to rethink your function design and calling conventions.

One technique that can be helpful if you find yourself with a large number of function parameters is to put

your function parameters in a structure. Consider the following program, which contains a function named

pr i nt _r epor t () that uses 10 parameters. Instead of making an enormous function declaration and proto-

type, the pr i nt _r epor t () function uses a structure to get its parameters:

#i nc l ude <st di o. h>

t ypedef s t r uct

{

 i nt or i ent at i on;

 char r pt _name[25] ;

 char r pt _pat h[40] ;

 i nt dest i nat i on;

 char out put _f i l e[25] ;

 i nt s t ar t i ng_page;

 i nt endi ng_page;

 char db_name[25] ;

 char db_pat h[40] ;

 i nt dr af t _qual i t y ;

} RPT_PARMS;

voi d mai n(voi d) ;

i nt pr i nt _r epor t (RPT_PARMS*) ;

voi d mai n(voi d)

{

 RPT_PARMS r pt _par m; / * def i ne t he r epor t par amet er

 s t r uct ur e var i abl e * /

 . . .

 / * set up t he r epor t par amet er s t r uct ur e var i abl e t o pass t o t he

 pr i nt _r epor t () f unct i on * /

C Programming: Just the FAQs164

 r pt _par m. or i ent at i on = ORI ENT_LANDSCAPE;

 r pt _par m. r pt _name = “ QSALES. RPT” ;

 r pt _par m. r pt _pat h = “ C: \ REPORTS” ;

 r pt _par m. dest i nat i on = DEST_FI LE;

 r pt _par m. out put _f i l e = “ QSALES. TXT” ;

 r pt _par m. st ar t i ng_page = 1;

 r pt _par m. endi ng_page = RPT_END;

 r pt _par m. db_name = “ SALES. DB” ;

 r pt _par m. db_pat h = “ C: \ DATA” ;

 r pt _par m. dr af t _qual i t y = TRUE;

 / * Cal l t he pr i nt _r epor t () f unct i on, passi ng i t a poi nt er t o t he

 par amet er s i nst ead of passi ng i t a l ong l i s t of 10 separ at e

 par amet er s. * /

 r et _code = pr i nt _r epor t (&r pt _par m) ;

 . . .

}

i nt pr i nt _r epor t (RPT_PARMS* p)

{

 i nt r c ;

 . . .

 / * access t he r epor t par amet er s passed t o t he pr i nt _r epor t ()

 f unct i on * /

 or i ent _pr i nt er (p- >or i ent at i on) ;

 set _pr i nt er _qual i t y((p- >dr af t _qual i t y == TRUE) ? DRAFT : NORMAL) ;

 . . .

 r et ur n r c;

}

The preceding example avoided a large, messy function prototype and definition by setting up a predefined

structure of type RPT_PARMS to hold the 10 parameters that were needed by the pr i nt _r epor t () function.

The only possible disadvantage to this approach is that by removing the parameters from the function

definition, you are bypassing the compiler’s capability to type-check each of the parameters for validity

during the compile stage.

Generally, you should keep your functions small and focused, with as few parameters as possible to help with

execution speed. If you find yourself writing lengthy functions with many parameters, maybe you should

rethink your function design or consider using the structure-passing technique presented here. Additionally,

keeping your functions small and focused will help when you are trying to isolate and fix bugs in

your programs.

Chapter VIII • Functions 165

Cross Reference:
VIII.1: When should I declare a function?

VIII.2: Why should I prototype a function?

VIII.4: What is a static function?

VIII.4: What is a static function?
Answer:

A static function is a function whose scope is limited to the current source file. Scope refers to the visibility

of a function or variable. If the function or variable is visible outside of the current source file, it is said to

have global, or external, scope. If the function or variable is not visible outside of the current source file, it

is said to have local, or static, scope.

A static function therefore can be seen and used only by other functions within the current source file. When

you have a function that you know will not be used outside of the current source file or if you have a function

that you do not want being used outside of the current source file, you should declare it as st at i c. Declaring

local functions as st at i c is considered good programming practice. You should use static functions often

to avoid possible conflicts with external functions that might have the same name.

For instance, consider the following example program, which contains two functions. The first function,

open_cust omer _t abl e() , is a global function that can be called by any module. The second function,

open_cust omer _i ndexes() , is a local function that will never be called by another module. This is because

you can’t have the customer’s index files open without first having the customer table open. Here is the code:

#i nc l ude <st di o. h>

i nt open_cust omer _t abl e(voi d) ; / * gl obal f unct i on, cal l abl e f r om

 any modul e * /

s t at i c i nt open_cust omer _i ndexes(voi d) ; / * l ocal f unct i on, used onl y i n

 t hi s modul e * /

i nt open_cust omer _t abl e(voi d)

{

 i nt r et _code;

 / * open t he cust omer t abl e * /

 . . .

 i f (r et _code == OK)

 {

 r et _code = open_cust omer _i ndexes() ;

 }

 r et ur n r et _code;

}

C Programming: Just the FAQs166

st at i c i nt open_cust omer _i ndexes(voi d)

{

 i nt r et _code;

 / * open t he i ndex f i l es used f or t hi s t abl e * /

 . . .

 r et ur n r et _code;

}

Generally, if the function you are writing will not be used outside of the current source file, you should declare

it as st at i c.

Cross Reference:
VIII.1: When should I declare a function?

VIII.2: Why should I prototype a function?

VIII.3: How many parameters should a function have?

VIII.5: Should a function contain a return statement if it does
not return a value?

Answer:
In C, void functions (those that do not return a value to the calling function) are not required to include a

r et ur n statement. Therefore, it is not necessary to include a r et ur n statement in your functions declared as

being void.

In some cases, your function might trigger some critical error, and an immediate exit from the function might

be necessary. In this case, it is perfectly acceptable to use a r et ur n statement to bypass the rest of the function’s

code. However, keep in mind that it is not considered good programming practice to litter your functions

with r et ur n statements—generally, you should keep your function’s exit point as focused and clean

as possible.

Cross Reference:
VIII.8: What does a function declared as PASCAL do differently?

VIII.9: Is using exi t () the same as using r et ur n?

Chapter VIII • Functions 167

VIII.6: How can you pass an array to a function by value?
Answer:

An array can be passed to a function by value by declaring in the called function the array name with square

brackets ([and]) attached to the end. When calling the function, simply pass the address of the array (that

is, the array’s name) to the called function. For instance, the following program passes the array x[] to the

function named byval _f unc() by value:

#i nc l ude <st di o. h>

voi d byval _f unc(i nt []) ; / * t he byval _f unc() f unct i on i s passed an

 i nt eger ar r ay by val ue * /

voi d mai n(voi d) ;

voi d mai n(voi d)

{

 i nt x [10] ;

 i nt y ;

 / * Set up t he i nt eger ar r ay. * /

 f or (y=0; y<10; y++)

 x [y] = y ;

 / * Cal l byval _f unc() , passi ng t he x ar r ay by val ue. * /

 byval _f unc(x) ;

}

/ * The byval _f unct i on r ecei ves an i nt eger ar r ay by val ue. * /

voi d byval _f unc(i nt i [])

{

 i nt y ;

 / * Pr i nt t he cont ent s of t he i nt eger ar r ay. * /

 f or (y=0; y<10; y++)

 pr i nt f (“ %d\ n” , i [y]) ;

}

In this example program, an integer array named x is defined and initialized with 10 values. The function

byval _f unc() is declared as follows:

i nt byval _f unc(i nt []) ;

C Programming: Just the FAQs168

The i nt [] parameter tells the compiler that the byval _f unc() function will take one argument—an array

of integers. When the byval _f unc() function is called, you pass the address of the array to byval _f unc() :

byval _f unc(x) ;

Because the array is being passed by value, an exact copy of the array is made and placed on the stack. The

called function then receives this copy of the array and can print it. Because the array passed to byval _f unc()

is a copy of the original array, modifying the array within the byval _f unc() function has no effect on the

original array.

Passing arrays of any kind to functions can be very costly in several ways. First, this approach is very inefficient

because an entire copy of the array must be made and placed on the stack. This takes up valuable program

time, and your program execution time is degraded. Second, because a copy of the array is made, more

memory (stack) space is required. Third, copying the array requires more code generated by the compiler,

so your program is larger.

Instead of passing arrays to functions by value, you should consider passing arrays to functions by reference:

this means including a pointer to the original array. When you use this method, no copy of the array is made.

Your programs are therefore smaller and more efficient, and they take up less stack space. To pass an array

by reference, you simply declare in the called function prototype a pointer to the data type you are holding

in the array.

Consider the following program, which passes the same array (x) to a function:

#i nc l ude <st di o. h>

voi d const _f unc(const i nt *) ;

voi d mai n(voi d) ;

voi d mai n(voi d)

{

 i nt x [10] ;

 i nt y ;

 / * Set up t he i nt eger ar r ay. * /

 f or (y=0; y<10; y++)

 x [y] = y ;

 / * Cal l const _f unc() , passi ng t he x ar r ay by r ef er ence. * /

 const _f unc(x) ;

}

/ * The const _f unct i on r ecei ves an i nt eger ar r ay by r ef er ence.

 Not i ce t hat t he poi nt er i s decl ar ed as const , whi ch r ender s

 i t unmodi f i abl e by t he const _f unc() f unct i on. * /

voi d const _f unc(const i nt * i)

{

 i nt y ;

 / * Pr i nt t he cont ent s of t he i nt eger ar r ay. * /

Chapter VIII • Functions 169

 f or (y=0; y<10; y++)

 pr i nt f (“ %d\ n” , * (i +y)) ;

}

In the preceding example program, an integer array named x is defined and initialized with 10 values. The

function const _f unc() is declared as follows:

i nt const _f unc(const i nt *) ;

The const i nt * parameter tells the compiler that the const _f unc() function will take one argument—a

constant pointer to an integer. When the const _f unc() function is called, you pass the address of the array

to const _f unc() :

const _f unc(x) ;

Because the array is being passed by reference, no copy of the array is made and placed on the stack. The called

function receives simply a constant pointer to an integer. The called function must be coded to be smart

enough to know that what it is really receiving is a constant pointer to an array of integers. The const modifier

is used to prevent the const _f unc() from accidentally modifying any elements of the original array.

The only possible drawback to this alternative method of passing arrays is that the called function must be

coded correctly to access the array—it is not readily apparent by the const _f unc() function prototype or

definition that it is being passed a reference to an array of integers. You will find, however, that this method

is much quicker and more efficient, and it is recommended when speed is of utmost importance.

Cross Reference:
VIII.8: What does a function declared as PASCAL do differently?

VIII.7: Is it possible to execute code even after the program
exits the main() function?

Answer:
The standard C library provides a function named at ex i t () that can be used to perform “cleanup”

operations when your program terminates. You can set up a set of functions you want to perform

automatically when your program exits by passing function pointers to the at ex i t () function. Here’s an

example of a program that uses the at ex i t () function:

#i nc l ude <st di o. h>

#i nc l ude <st dl i b. h>

voi d c l ose_f i l es(voi d) ;

voi d pr i nt _r egi s t r at i on_message(voi d) ;

i nt mai n(i nt , char * *) ;

i nt mai n(i nt ar gc, char * * ar gv)

{

C Programming: Just the FAQs170

 . . .

 at ex i t (pr i nt _r egi s t r at i on_message) ;

 at ex i t (cl ose_f i l es) ;

 whi l e (r ec_count < max_r ecor ds)

 {

 pr ocess_one_r ecor d() ;

 }

 exi t (0) ;

}

This example program uses the at ex i t () function to signify that the cl ose_f i l es() function and the

pr i nt _r egi s t r at i on_message() function need to be called automatically when the program exits. When the

mai n() function ends, these two functions will be called to close the files and print the registration message.

There are two things that should be noted regarding the at ex i t () function. First, the functions you specify

to execute at program termination must be declared as void functions that take no parameters. Second, the

functions you designate with the at ex i t () function are stacked in the order in which they are called with

at ex i t () , and therefore they are executed in a last-in, first-out (LIFO) method. Keep this information in

mind when using the at ex i t () function. In the preceding example, the at ex i t () function is stacked as

shown here:

at ex i t (pr i nt _r egi s t r at i on_message) ;

at ex i t (c l ose_f i l es) ;

Because the LIFO method is used, the cl ose_f i l es() function will be called first, and then the

pr i nt _r egi s t r at i on_message() function will be called.

The at ex i t () function can come in handy when you want to ensure that certain functions (such as closing

your program’s data files) are performed before your program terminates.

Cross Reference:
VIII.9: Is using exi t () the same as using r et ur n?

VIII.8: What does a function declared as PASCAL do
differently?

Answer:
A C function declared as PASCAL uses a different calling convention than a “regular” C function. Normally,

C function parameters are passed right to left; with the PASCAL calling convention, the parameters are passed

left to right.

Consider the following function, which is declared normally in a C program:

i nt r egul ar _f unc(i nt , char * , l ong) ;

Chapter VIII • Functions 171

Using the standard C calling convention, the parameters are pushed on the stack from right to left. This

means that when the r egul ar _f unc() function is called in C, the stack will contain the following parameters:

l ong

char *

i nt

The function calling r egul ar _f unc() is responsible for restoring the stack when r egul ar _f unc() returns.

When the PASCAL calling convention is being used, the parameters are pushed on the stack from left to right.

Consider the following function, which is declared as using the PASCAL calling convention:

i nt PASCAL pascal _f unc(i nt , char * , l ong) ;

When the function pascal _f unc() is called in C, the stack will contain the following parameters:

i nt

char *

l ong

The function being called is responsible for restoring the stack pointer. Why does this matter? Is there any

benefit to using PASCAL functions?

Functions that use the PASCAL calling convention are more efficient than regular C functions—the function

calls tend to be slightly faster. Microsoft Windows is an example of an operating environment that uses the

PASCAL calling convention. The Windows SDK (Software Development Kit) contains hundreds of functions

declared as PASCAL.

When Windows was first designed and written in the late 1980s, using the PASCAL modifier tended to make

a noticeable difference in program execution speed. In today’s world of fast machinery, the PASCAL modifier

is much less of a catalyst when it comes to the speed of your programs. In fact, Microsoft has abandoned the

PASCAL calling convention style for the Windows NT operating system.

In your world of programming, if milliseconds make a big difference in your programs, you might want to

use the PASCAL modifier when declaring your functions. Most of the time, however, the difference in speed

is hardly noticeable, and you would do just fine to use C’s regular calling convention.

Cross Reference:
VIII.6: How can you pass an array to a function by value?

VIII.9: Is using exit() the same as using return?
Answer:

No. The exi t () function is used to exit your program and return control to the operating system. The r et ur n

statement is used to return from a function and return control to the calling function. If you issue a return

from the mai n() function, you are essentially returning control to the calling function, which is the operating

system. In this case, the r et ur n statement and exi t () function are similar. Here is an example of a program

that uses the exi t () function and r et ur n statement:

#i nc l ude <st di o. h>

#i nc l ude <st dl i b. h>

i nt mai n(i nt , char * *) ;

C Programming: Just the FAQs172

i nt do_pr ocessi ng(voi d) ;

i nt do_somet hi ng_dar i ng() ;

i nt mai n(i nt ar gc, char * * ar gv)

{

 i nt r et _code;

 i f (ar gc < 3)

 {

 pr i nt f (“ Wr ong number of ar gument s used! \ n”) ;

 / * r et ur n 1 t o t he oper at i ng syst em * /

 ex i t (1) ;

 }

 r et _code = do_pr ocessi ng() ;

 . . .

 / * r et ur n 0 t o t he oper at i ng syst em * /

 exi t (0) ;

}

i nt do_pr ocessi ng(voi d)

{

 i nt r c ;

 r c = do_somet hi ng_dar i ng() ;

 i f (r c == ERROR)

 {

 pr i nt f (“ Somet hi ng f i shy i s goi ng on ar ound her e. . . ” \ n) ;

 / * r et ur n r c t o t he oper at i ng syst em * /

 ex i t (r c) ;

 }

 / * r et ur n 0 t o t he cal l i ng f unct i on * /

 r et ur n 0;

}

In the mai n() function, the program is exited if the argument count (ar gc) is less than 3. The statement

C Programming: Just the FAQs174

Chapter VIII • Functions 173

exi t (1) ;

tells the program to exit and return the number 1 to the operating system. The operating system can then

decide what to do based on the return value of the program. For instance, many DOS batch files check the

environment variable named ERRORLEVEL for the return value of executable programs.

Cross Reference:
VIII.5: Should a function contain a r et ur n statement if it does not return a value?

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

